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Rayleigh–Bénard convection of viscoelastic fluids in a cavity is investigated using a newly developed grid-
by-grid inversion method. In the grid-by-grid inversion method the hyperbolic constitutive equation is split
such that the term for the convective transport of stress tensor is treated as a source. This renders the stress
tensor a local function of the velocity gradient tensor as in the case of the Newtonian fluids and makes the
algorithms for Newtonian fluids applicable to viscoelastic fluids. To corroborate the accuracy of the grid-by-
grid inversion method, a linear stability analysis is performed to find the critical Rayleigh number and the
domains of Hopf bifurcation and exchange of stabilities in the parameter space. The numerical results from
the grid-by-grid inversion method are found to coincide with those of linear stability analysis exactly. Also
considered is the standard benchmark problem of viscoelastic flow past a cylinder placed at the center
between two plates to confirm the accuracy of the grid-by-grid inversion method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical simulation of isothermal viscoelastic flows has been
investigated extensively during last decades. However, fluid flow is
strongly influenced by heat transfer in most real industrial opera-
tions. Intriguing questions associated with numerical simulation of
nonisothermal viscoelastic flows are how to find appropriate type
of constitutive equations describing the momentum and heat
transfer in viscoelastic fluids and how to deal with storage of elas-
tic energy in addition to difficulties inherent in the computation of
isothermal viscoelastic flows [1–3].

In the present investigation, we consider the Rayleigh–Bénard
convection of viscoelastic fluids in a two-dimensional cavity. The
Rayleigh–Bénard convection is one of the most extensively studied
problem of hydrodynamic stability due to its frequent occurrence
in various fields of science and engineering. A full account of the
linearized theory for Newtonian fluids is well documented in
Chandrasekhar [4]. The linear stability analysis has been extended
to viscoelastic fluids in a finite domain later [5]. The linear stability
analysis yields the minimum Rayleigh number or the minimum
temperature difference imposed on the system over which the
convective flow sets in. The availability of the linear stability the-
ory to the Rayleigh–Bénard problem makes it a good benchmark
problem for a new numerical method of nonisothermal viscoelastic
flows. Mathematically, a wide range of viscoelastic models are
mixed type, being hyperbolic–elliptic in the steady state and
hyperbolic–parabolic in the unsteady state [6]. This make the
ll rights reserved.
numerical simulation of viscoelastic fluids difficult since it is quite
cumbersome to devise a numerical algorithm that works for mixed
systems. Various numerical techniques for solving viscoelastic
flows, including finite volume method, finite element method
and spectral method, are well documented in the references cited
[7,8]. In the present investigation, we solve the Rayleigh–Bénard
convection of viscoelastic fluids in finite domains using a newly
developed grid-by-grid inversion method. In the hyperbolic consti-
tutive equations of viscoelastic fluids, the term representing the
convective transport of stress tensor makes the stress field depend
on the velocity gradient tensor in a nonlocal manner. If the term for
convective transport of stress is assumed to be known, the consti-
tutive equation becomes local and the stress tensor is easily eval-
uated for a given velocity gradient tensor at the same location.
Then, the numerical solution of viscoelastic flows becomes as easy
as that of Newtonian fluids. In this method, the six components of
stress tensor are found in terms of the velocity gradient tensor at
the same location by inverting a six-by-six matrix at each grid
point. Thus, we call this algorithm the grid-by-grid inversion meth-
od. The assumed source term of the convection of stress tensor can
be updated iteratively in the numerical procedure. In principle, this
algorithm can be combined with finite volume method, finite ele-
ment method or spectral method. In the present work, we adopt a
finite volume method based on the SIMPLE algorithm [9] to imple-
ment the grid-by-grid inversion method. Regarding the constitu-
tive equation, we adopt a general constitutive equation that
encompasses the upper convected Maxwell (UCM) model, the Old-
royd B model and the PTT model with additional consideration of a
realistic thermorheological behavior for the nonisothermal calcula-
tions. Wachs and Clermont [1] have used a general thermodynamic
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Nomenclature

aT shift parameter
C1;C2 parameters in WLF equation
D rate of deformation tensor
g parameter defined in Eq. (7)
L characteristic length
P pressure
Pr Prandtl number
Ra Rayleigh number
Rac critical Rayleigh number
t time
v velocity
£ operation defined in Eq. (11)

Greek symbols
a energy partition coefficient
aT thermal diffusivity
b retardation ratio

bt thermal expansion coefficient
� material parameter appearing in Eq. (5)
g0 zero-shear rate viscosity
H dimensionless temperature
k relaxation time
l parameter defined in Eq. (8)
n material parameter appearing Eq. (5)
R stress tensor defined in Eq. (2)
r total stress tensor
s polymer-contributed stress tensor
w stream function

Superscripts
� dimensional variables
it itth time step
n nth iteration

4852 H.M. Park et al. / International Journal of Heat and Mass Transfer 52 (2009) 4851–4861
framework to describe the energy conversion mechanism occur-
ring with viscoelastic fluids and adopted the WLF equation to take
into consideration the temperature dependence of the material
parameters. This kind of thermodynamic consideration is essential
in the investigation of nonisothermal viscoelastic flows.

To corroborate the grid-by-grid inversion method, we apply the
linear stability analysis to the same system and find the critical
Rayleigh number and the domains in the parameter space where
the exchange of stabilities and Hopf bifurcation occur. The tech-
nique of linear stability analysis is an extension of Park and Ryu
[5] and employs a Legendre spectral method [10]. To further con-
firm the accuracy and robustness of the grid-by-grid inversion
method, we also consider a viscoelastic flow past a cylinder placed
at the center between two plates, which has been served as a tra-
ditional benchmark problem.

2. Governing equations

The governing equations for nonisothermal flows of viscoelastic
Boussinesq fluids are nondimensionalized by using the following
dimensionless variables:

v ¼ v�L
aT

; t ¼ t�aT

L2 ; r ¼ r�L2

g0aT
; P ¼ P�L2

g0aT
; D ¼ D�L2

aT
;

s ¼ s�L2

g0aT
; k ¼ k�aT

L2 ð1Þ

Here, variables with superscript asterisk denote dimensional vari-
ables, aT is the thermal diffusivity, g0 is the zero-shear rate viscosity
of the viscoelastic fluid, L is the depth of the cavity and k� is the
relaxation time. Then the dimensionless governing equations may
be written as:

r � v ¼ 0 ð2Þ
1
Pr

@v
@t
þ v � rv

� �
¼ r � rþ RaHj ð3Þ

r ¼ �PIþ 2ð1� bÞaT Dþ s ð4Þ

k0aT
@s

@t
þ v � rs

� �
¼ 2lbaT Dþ k0aTð£ � sþ s � £TÞ � gs ð5Þ

@H
@t
þ v � rH ¼ r2Hþ f Eas : Dþ f Eð1� aÞ trs

2k0aT

ð6Þ

where
g ¼ 1þ k0�
b

trs ð7Þ

l ¼ 1þ nð2� nÞðk0aTÞ2 _c2

ð1þ ðk0aTÞ2 _c2Þð1�nÞ=2 ð8Þ

_c2 ¼ 2trD2 ð9Þ

D ¼ 1
2
ðrv þ ðrvÞTÞ ð10Þ

£ ¼ ðrvÞT � nD ð11Þ

Here, n and � are material parameters, k is the dimensionless relax-
ation time called the Deborah number. The superscript T is the
transpose, tr is the trace and b is the retardation ratio defined by
b ¼ gm0=g0, where gm0 is the zero-shear rate molecular-contributed
viscosity. The dimensionless temperature H is defined by
H ¼ ðT � TtÞ=DT and DT � Tb � Tt , where Tb is the temperature at
the bottom of the system and Tt that at the top of the system,
and j is the unit vector in the negative direction of the gravitational
force. The dimensionless groups, Pr;Ra and f E are defined by

Pr ¼ g0

qaT
; Ra ¼ qgL3btDT

aTg0
¼ DT

CT
; CT ¼

aTg0

qgL3bt
;

f E ¼ aTqgLbt

kRa
ð12Þ

In Eq. (12), bt is the thermal expansion coefficient of the viscoelastic
fluid defined by bt ¼ � 1

q
@q
@T

� �
and aT is the thermal diffusivity de-

fined by k
qCp

. In the energy equation, the total heat source term is

written in terms of the energy partitioning coefficient a;a ¼ 0 cor-
responds to pure energy elasticity and a ¼ 1 corresponds to pure
entropy elasticity [3]. The shift factor aT takes care of the tempera-
ture dependence of viscosity g0 and relaxation time k0 and obeys
the WLF equation [12] such that

ln aT ¼
�C1H

ðC2=ðCT RaÞÞ þH
ð13Þ

In the present work, we take C1 ¼ 4:54 and C2 ¼ 150:36 K as in
Wachs and Clermont [1]. For 1 cm layer of fluid, CT is about
6:5627� 10�5 K for most viscoelastic fluids. We solve Eqs. (2)–
(13) to find the velocity and temperature fields in a two-dimen-
sional cavity when the bottom of the cavity is hot, the top is cold
and the side walls are adiabatic, i.e., H ¼ 1:0 at y ¼ 0:0;H ¼ 0:0 at
y ¼ 1:0 and @H

@x ¼ 0 at x ¼ 0:0 and 1.0. The boundary conditions for
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the velocity field is nonslip. This is the traditional Rayleigh–Bénard
convection problem extended to viscoelastic fluids in finite
domains.
3. Numerical solution using the grid-by-grid inversion method

The convection term of the stress tensor s in Eq. (5), v � rs,
makes the functional dependence of s on the velocity gradient ten-
sor rv nonlocal and necessitates boundary conditions for s. In the
grid-by-grid inversion method, v � rs in Eq. (5) in assumed to be a
known source term and Eq. (5) is solved for s in terms of local
velocity gradient tensor rv. The steps for obtaining the velocity
and the stress at time step nþ 1;vnþ1 and snþ1, using the known
velocity and stress at time step n;vn and sn, proceed in an iterative
manner as follows. First, define

C ¼ vnþ1ðitÞ � rsnþ1ðitÞ ð14Þ

where the superscript nþ 1ðitÞ indicates variables at time step nþ 1
in the itth iteration. Then Eq. (5) is discretized in the time variable as

k0aT
snþ1ðitþ1Þ � sn

Dt
¼ � k0aT Cþ 2lnþ1ðitÞ baT

Re
Dnþ1ðitÞ

þ k0aT £nþ1ðitÞ � snþ1ðitþ1Þ þ snþ1ðitþ1Þ � £Tnþ1ðitÞ� �
� gnþ1ðitÞsnþ1ðitþ1Þ ð15Þ

where gnþ1ðitÞ and lnþ1ðitÞ imply that they are evaluated by Eqs. (7)
and (8) using variables at the nþ 1th time step in the itth iteration.
Using Eqs. (10) and (11), D and £ can be replaced with the velocity
gradient rv. Then, Eq. (16) becomes the following local matrix
equations for snþ1ðitþ1Þ defined at each grid point.

k0aT

Dt
þ gnþ1ðitÞ

 !
snþ1ðitþ1Þ

� k0aT 1� n
2

� �
ðrvÞT

nþ1ðitÞ
� n

2
ðrvÞnþ1ðitÞ

� 	
� snþ1ðitþ1Þ

� snþ1ðitþ1Þ � k0aT 1� n
2

� �
ðrvÞnþ1ðitÞ � n

2
ðrvÞT

nþ1ðitÞ
� 	

¼ k0aT

Dt
sn � k0aT Cþ lnþ1ðitÞ baT

Re
ðrvÞnþ1ðitÞ þ ðrvÞT

nþ1ðitÞh i
ð16Þ

Once C is evaluated using variables at the previous iteration, Eq.
(16) can be solved easily by inverting a six-by-six matrix at each
grid point for the six independent stress components at the nþ 1
th time step in the it þ 1th iteration. Eq. (16) is also solved at the
boundary grid points to find the boundary stress field. This suggests
a natural method of imposing boundary conditions for the hyper-
bolic stress equations. After obtaining snþ1ðitþ1Þ, the velocity field at
the nþ 1th time step in the it þ 1th iteration, vnþ1ðitþ1Þ, is obtained
by solving Eqs. (2)–(4) as follows:

r � vnþ1ðitþ1Þ ¼ 0 ð17Þ
vnþ1ðitþ1Þ � vn

Dt
þ vnþ1ðitþ1Þ � rvnþ1ðitþ1Þ

¼ �rPnþ1ðitþ1Þ þ ð1� bÞ
Re

r2vnþ1ðitþ1Þ þ r � snþ1ðitþ1Þ ð18Þ

Eqs. (17) and (18) can be solved using any numerical methods for
the incompressible Navier–Stokes equation. In the present investi-
gation, we employ a finite volume method based on the SIMPLE
algorithm [9]. Eqs. (14), (16)–(18) are solved iteratively until con-
verged velocity and stress fields are attained for the nþ 1th time
step. To stabilize the numerical scheme for large values of k0, Eq.
(14) is evaluated using any of the various upwind schemes. In the
present investigation, we employ the first order upwind scheme
to evaluate C. Once the velocity field vnþ1 is obtained the tempera-
ture Hnþ1 is found by solving Eq. (6) as follows:

Hnþ1 �Hn

Dt
þ vnþ1 � rHnþ1 ¼ 1

RePr
r2Hnþ1 þ f Easnþ1

: Dnþ1 þ f Eð1� aÞ trs
nþ1

2k0aT

ð19Þ

We expound this algorithm for the stress equation, Eq. (16), for
two-dimensional Rayleigh–Bénard convection under consideration.
Denoting the components of velocity vector v as ðvx;vyÞ and the
three independent components of s and C for a two-dimensional sys-
tem as ðsxx; sxy; syyÞ and ðCxx;Cxy;CyyÞ, Eq. (16) can be represented by
the following matrix equation, which must be solved at each grid
point ij.

Ax ¼ b ð20Þ

where

x ¼ sxx
ij ; s

xy
ij ; s

yy
ij

� �nþ1ðitþ1Þ
ð21Þ

In the above equation, the b vector is composed of sðnÞ;Cnþ1ðitÞ and
rvnþ1ðitÞ, while the matrix A is composed of the appropriate compo-
nents of rvnþ1ðitÞ. The specific components of A and b for the grid ij
are displayed in Fig. 1.

The overall solution procedure for the grid-by-grid inversion
algorithm for the Rayleigh–Bénard convection problem may be
summarized as follows:

(0) vn and sn have been obtained in the previous time step n.
The procedure for the time step nþ 1 begins as:

(1) Assume vnþ1ðitÞ and snþ1ðitÞ. For the first iteration, vnþ1ðitÞ ¼ vn

and snþ1ðitÞ ¼ sn.
(2) Find g and l at each grid point using Eqs. (7)–(9), respec-

tively. Evaluate C in Eq. (14) using an upwind scheme.
(3) Using vnþ1ðitÞ, solve Eq. (16) for snþ1ðitþ1Þ by inverting a three

by three matrix at each grid point including the boundary
grids.

(4) Solve Eqs. (17) and (18) for vnþ1ðitþ1Þ using the SIMPLE algo-
rithm. Instead, any other Navier–Stokes solver may be
employed.

(5) Convergence check for sðnþ1Þ and vðnþ1Þ. If not converged, go
to step (1). Otherwise, solve the energy Eq. (19) to find Hnþ1.

(6) Go to step 0.

Usually convergence for the sðnþ1Þ and vðnþ1Þ coupling is attained
in two or three iterations.

The case b ¼ 1 requires a slight modification to the above algo-
rithm. In this case the viscous force term in Eqs. (3) and (4)
becomes zero, rendering many algorithms for the Navier–Stokes
equation inapplicable, including the SIMPLE method. The difficulty
with b ¼ 1 can be circumvented by employing the EVSS formula-
tion of Rajagopalan et al. [11]. Namely, when b ¼ 1, the total stress
tensor r is decomposed into pure viscous and elastic parts
�PIþ 2aT D and R, such that

r ¼ �PIþ 2aT Dþ R ð22Þ

where R is defined by

R ¼ s� 2aT D ð23Þ

Substituting Eqs. (22) and (23) into Eqs. (3) and (5), we find the
equations for v and R, which can be solved following exactly the
same procedure of the grid-by-grid inversion method described
above.



λoaT/Δt+
λoaTξ(∂vx/∂x)ij

- λoaT(1-ξ/2)2
(∂vx/∂x)ij + gij

ij ij

n+ (it+ )

=
λoaT/Δt + gij

λoaT/Δt
+λoaTξ(∂vy/∂y)ij

- λoaT(1-ξ/2)
2(∂vy/∂y)ij

+ gij

λoaT(∂vy/∂x)ij

- λoaT(1-ξ/2)
(∂vx/∂y)ij

τxx

τyy

τxy

λoaTξ/2(∂vx/∂y)ij

-λoaT(1-ξ/2)
(∂vy/∂x)ij

0
λoaT(∂vx/∂y)ij

- λoaT(1-ξ/2)
2(∂vy/∂x)ij

ij

λoaT/Δtτxx(n)
ij

-λoaTC
xx
ij

+2μijβaT

(∂vx/∂x)ij/Re

λoaT/Δt τxy(n)
ij

-λoaTC
xy
ij

+μijβaT

(∂vx/∂y+∂vy/∂x)ij

/Re

λoaT/Δt τyy(n)
ij

-λoaTC
yy
ij

+2μijβaT

(∂vy/∂y)ij

/Re

0
λoaTξ(∂vy/∂x)ij

- λoaT(1-ξ/2)
2(∂vx/∂y)ij

n+ (it)

ijij

11 1

Fig. 1. The matrix A and vector b in Eq. (20).
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4. Linear stability analysis for the Rayleigh–Bénard convection
in a two-dimensional cavity

The critical Rayleigh number can be found very accurately by
means of the linear stability analysis [4]. The linear stability analysis
converts the governing equations to an eigenvalue problem and
determine the stability of a state of the system based on the eigen-
value. If the largest real part of the eigenvalue is positive, the state
is unstable and transits to another state. Otherwise, the state is
stable to the noise. For the Rayleigh–Bénard convection, the eigen-
values depend on the Rayleigh number and the critical Rayleigh
number is the one over which the largest real part of the eigenvalues
become positive. The neutral stable state is the state for which the
largest real part of eigenvalues is zero. With the linear stability
analysis, if the imaginary part of the eigenvalue at the neutrally
stable state is zero, the new mode or flow pattern grows monotoni-
cally without oscillation, and we say that the exchange of stabilities
is valid [4]. On the contrary, if the imaginary part of the eigenvalue at
the neutrally stable state is nonzero, the new mode grows with oscil-
lation, and this instability is called overstability or Hopf bifurcation.
These results from the linear stability analysis shall the exploited to
corroborate the grid-by-grid inversion method soon.

The conduction state is given by:

v ¼ 0 and H ¼ 1� y ð24Þ
Next, we linearize governing Eqs. (2)–(6) with respect to the con-
duction state for the linear stability analysis. The deviational tem-
perature h is defined by

h � H� ð1� yÞ ð25Þ
The shift factor aT is linearized for h� 1 as follows:

aT ¼ exp
�c1H
c2

CT RaþH

" #
¼ exp

�c1ð1�yÞ� c1h
c2

CT Raþð1�yÞþh

" #

¼ exp
�c1ð1�yÞ
c2

CT Raþð1�yÞþh
�c1ð1�yÞ

c2
CT Raþð1�yÞ
� �2�

c1
c2

CT Raþð1�yÞ

0B@
1CAþ�� �

264
375

¼ exp
�c1ð1�yÞ
c2

CT Raþð1�yÞ

" #
1þh

�c1ð1�yÞ
c2

CT Raþð1�yÞ
� �2�

c1
c2

CT Raþð1�yÞ

0B@
1CAþ�� �

264
375

¼CeðyÞþOðhÞ ð26Þ
where

CeðyÞ ¼ exp
�c1ð1� yÞ
c2

CT Raþ ð1� yÞ

" #
ð27Þ

Furthermore,

l ¼ 1þ Oðv2Þ ð28Þ

Then the linearized set of equations is

1
Pr

@v
@t
¼ �rP0 þ 2ð1� bÞr � ðCeDÞ þ r � sþ Rahj ð29Þ

@h
@t
¼ r2hþ vy þ f Eð1� aÞ trs

2koCe ð30Þ

where

P0 ¼ P � Ra y� 1
2

y2
� �

ð31Þ

For a two-dimensional system, we many introduce the stream func-
tion w such that

ðvx; vyÞ � @w
@y

;� @w
@x

� �
ð32Þ

In terms of the stream function, Eqs. (29) and (30) become

@

@t
ðr2wÞ¼ Prð1�bÞ Ce @4w

@x4 þ
@4w
@y4

 !
�@

2Ce

@y2

@2w
@x2 �

@2w
@y2

 !"

þ2Ce @4/
@x2@y2þ2

@Ce

@y
@3w
@x2@y

þ2
@Ce

@y
@3w
@y3

#

þPr
@2

@x@y
ðsxx�syyÞþPr

@2

@y2�
@2

@x2

 !
sxy�RaPr

@h
@x

ð33Þ

@h
@t
¼r2h�@w

@x
þ f Eð1�aÞs

xxþsyy

2koCe ð34Þ

For a two-dimensional system, the stress Eq. (5) may be linearized
as;
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ko @

@t
þ 1

� �
sxx ¼ 2b

@2w
@x@y

ð35Þ

ko @

@t
þ 1

� �
syy ¼ �2b

@2w
@x@y

ð36Þ

ko @

@t
þ 1

� �
sxy ¼ b

@2w
@y2 �

@2w
@x2

 !
ð37Þ

Imposing the operator ko @
@t þ 1

� �
on Eqs. (33) and (34), sxx; sxy and

syy are eliminated in favor of w due to Eqs. (35)–(37).

@

@t
r2 1þko @

@t

� �
w

� 	
¼Prð1�bÞ Ce @

4

@x4

"
1þko @

@t

� �
w�@

2Ce

@y2

@2

@x2�
@2

@y2

 !
1þko @

@t

� �
w

þ2Ce @4

@x2@y2
1þko @

@t

� �
wþ2

@Ce

@y
@3

@x2@y
1þko @

@t

� �
wþ2

@Ce

@y
@3

@y3
1þko @

@t

� �
w

#

þ @2

@x@y
4bPr

@2w
@x@y

þ @2

@y2�
@2

@x2

 !
bPr

@2w
@y2�

@2w
@x2

 !

�RaPr
@

@x2
1þko @

@t

� �
h ð38Þ

@

@t
1þko @

@t

� �
h

� 	
¼r2 1þko @

@t

� �
h� @

@x
ð1þko @

@t
Þw

� 	
ð39Þ

Eqs. (38) and (39) may be rewritten as follows for the convenience
of the linear stability analysis.

@w
@t
¼C ð40Þ

r2Cþkor2 @C
@t
¼ð1�bÞ

Re
Ce @4w

@x4 þ
@4w
@y4

 !
þCeko @4C

@x4 þ
@4C
@y4

 !"

�@
2Ce

@y2

@2

@x2�
@2

@y2

 !
w�@

2Ce

@y2 ko @2

@x2�
@2

@y2

 !
C

þ2Ce @4w
@x2@y2þ2Ceko @4C

@x2@y2þ2
@Ce

@y
@3w
@x2@y

þ2
@Ce

@y
ko @3C
@x2@y

þ2
@Ce

@y
@3w
@y3 þ2

@Ce

@y
ko @

3C
@y3

#

þ4b
Re

@4w
@x2@y2þ

b
Re

@4w
@y4 �2

@4w
@x2@y2þ

@4w
@x4

 !
� Gr

Re2

@h
@x

� Gr

Re2 ko @

@x
U ð41Þ

@h
@t
¼U ð42Þ

Uþko @U
@t
¼ 1

RePr
r2hþko 1

RePr
r2U�@w

@x
�ko @C

@x
ð43Þ

The boundary conditions for w;C; h and U are as follows:

� at y¼0;1; w¼0;
@w
@y
¼0; C¼0;

@C
@y
¼0; h¼0; U¼0:

� at x¼0;1; w¼0;
@w
@x
¼0; C¼0;

@C
@x
¼0;

@h
@x
¼0;

@U
@x
¼0: ð44Þ

Eqs. (40)–(43) are discretized spatially using the Legendre spectral
method [10]. Using the Legendre spectral method, differentiations
of a function can be approximated by matrix multiplications.

@gf
@xg
ðxi; yjÞ ¼

XNXþ1

l¼1

cGX ðgÞi;l f ðxl; yjÞ

@gf
@yg
ðxi; yjÞ ¼

XNYþ1

l¼1

cGX ðgÞj;l f ðxi; ylÞ ð45Þ
where g ¼ 1;2;4 and NX + 1 and NY + 1 are the number of colloca-
tion points in the x- and y-direction, respectively. To convert Eqs.
(40)–(43) to an algebraic eigenvalue problem, it is necessary to rep-
resent various spatial differentiations as matrix multiplications
using Eq. (45) and remove the boundary grid values and outermost
internal grid values of w;C; h and U in terms of the remaining inter-
nal grid values by exploiting the boundary conditions [5]. In the fol-
lowing, we show how to represent the boundary grid values in
terms of the internal grid values for the case of an arbitrary function
/ with the following boundary conditions.

at x ¼ �1; / ¼ 0 and
@/
@x
¼ 0 ð46Þ

Eq. (44) in a discretized form is;

/i;j ¼ 0; /NXþ1;j ¼ 0XNXþ1

m¼1

cGX ð1Þlm /m;j ¼ 0;
XNXþ1

m¼1

cGX ð1ÞNXþ1;m/m;j ¼ 0 ð1 6 j 6 NY þ 1Þ ð47Þ

Solving Eq. (47), we can express the outermost internal grid values
in terms of the remaining internal grid values:

/2;j¼
XNX�1

m¼3

am/m;j¼0; /NX;j¼
XNX�1

m¼3

bm/m;j¼0 ð16 j6NYþ1Þ ð48Þ

where

am ¼
cGX ð1Þ1;NX

cGX ð1ÞNXþ1;m � cGX ð1ÞNXþ1;NX
cGX ð1Þl;mcGX ð1Þ1;2

cGX ð1ÞNXþ1;NX � cGX ð1Þ1;NX
cGX ð1ÞNXþ1;2

bm ¼
cGX ð1ÞNXþ1;2

cGX ð1Þl;m � cGX ð1Þ1;2
cGX ð1ÞNXþ1;mcGX ð1Þ1;2

cGX ð1ÞNXþ1;NX � cGX ð1Þ1;NX
cGX ð1ÞNXþ1;2

ð49Þ

Then

@2/
@x2

 !
ij

¼
XNX�1

m¼3

cGX ð2Þi2 am þ cGX ð2Þim þ cGX ð2Þi;NXbm

� �
/mj ð50Þ

All the other terms in Eqs. (40)–(43) are discretized in a similar
manner to yield a set of differential equations in time only. We
assume the following time dependence for the variables w;C; h and U:

w ¼ estŵx;y; C ¼ est bCx;y; h ¼ est ĥx;y; U ¼ est bUx;y ð51Þ

Then, Eqs. (40)–(43) are converted to the following matrix eigen-
value problem

sb � x ¼ a � x ð52Þ

where the eigenvector x is defined by

x ¼ ðŵ3;3; ŵ4;3; . . . ; ŵNX�1;NY�1; bC3;3; bC4;3; . . . ; bCNX�1;NY�1; h2;2;

h3;2; . . . ; hNX;NY ; U2;2;U3;2; . . . ;UNX;NYÞT ð53Þ

Solving the matrix eigenvalue problem Eq. (52), we find the eigen-
values s and corresponding eigenvectors. The eigenvalues s of Eq.
(52) determines the linear stability of the conduction state. The con-
duction state becomes unstable and convective flow sets in when
the largest real part of the eigenvalues becomes positive. The criti-
cal Rayleigh number is defined as the smallest Rayleigh number
when the largest real part of s is zero. When the largest real part
of s is zero, the corresponding imaginary part of s may be zero or
not, depending on the values of viscoelastic parameters k0 and b.
When the imaginary part of s is zero, it is called the exchange of sta-
bilities and the emerging convective flow grows monotonically
without oscillation. On the other hand, when the imaginary part
of s is nonzero, the convective flow sets in with a oscillation in
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the magnitude of velocity and this state is called the overstability or
Hopf bifurcation [4,13].

Fig. 2 shows the critical Rayleigh number Rac and the bound-
ary separating the region of exchange of stabilities and that of
Hopf bifurcation in the b� k0 plane when the aspect ratio
W=L ¼ 2:0, where L is the depth and W is the width of the cavity.
The boundary is represented using a dashed line. As explained
previously [5] the critical Rayleigh number remains the same as
that of the Newtonian fluid regardless of ðb; k0Þ values when the
exchange of stabilities is valid. However, when the overstability
occurs, the critical Rayleigh number depends on the values of
ðb; k0Þ and decreases as k0 or b increases. Fig. 3 shows the critical
Rayleigh number for the aspect ratio in the range 1.0–3.0 when
k0 ¼ 0:3;0:6;1:0 or 1:3 and b ¼ 0:9. The results show that the
envelope of least eigenvalues is a piecewise smooth curve, each
smooth section of the curve corresponding to a particular mode
number, i.e., number of convection cells at the onset of instability.
The mode number increases discretely as the aspect ratio W=L
increases.
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Fig. 3. Critical Rayleigh number vs. aspect rat
5. Numerical simulation of Rayleigh–Bénard convection of
viscoelastic fluids using the grid-by-grid inversion method

In this section, we present the results of numerical simulation for
the Rayleigh–Bénard convection of viscoelastic fluids using the grid-
by-grid inversion method explained in Section 3 for W=L ¼ 2:0. The
accuracy of numerical simulation is to be corroborated using the re-
sults of hydrodynamic stability analysis, i.e., Fig. 2. The following
parameter values are adopted as reference values:

n ¼ 0:5; � ¼ 0:01; aT ¼ 1:487� 10�7; C1 ¼ 4:54;

C2 ¼ 150:36 K; CT ¼ 6:5627� 10�5; Pr ¼ 7:2; a ¼ 1:0 ð54Þ

For the values of the Deborah number k0 and the retardation ratio
b, we choose the sets ðk0;bÞ ¼ ð0:02; 0:1Þ; ðk0;bÞ ¼ ð0:5;0:9Þ and
ðk0;bÞ ¼ ð1:3; 0:9Þ. According to Fig. 2, we find that ðk0;bÞ ¼
ð0:02;0:1Þ is located in the domain for the exchange of stabilities
while the remaining cases are located in the domain for overstabil-
ity or Hopf bifurcation. The critical Rayleigh number Rac for
.6 0.8 1

y
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696.456

623.088

494.856

452.88

347.76

Pr = 7.2
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CT=6.5627X10-5K

abilities and Hopf bifurcation in the b� k0 plane for the case of W=L ¼ 2:0.

pect ratio
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β=0.9
Pr = 7.2
C1=4.54
C2=150.36K
CT=6.5627X10-5

io for various values of k0 when b ¼ 0:9.
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ðk0;bÞ ¼ ð0:02;0:1Þ is 2010.135, Rac for ðk0; bÞ ¼ ð0:5;0:9Þ is 348.55
and Rac for ðk0;bÞ ¼ ð1:3;0:9Þ is 256.57. The number of grid points
adopted for this problem is (100,100). Further increase of grid num-
ber does not change the results appreciably.

Fig. 4 shows the temporal variation of convection strength at
various Rayleigh number when ðk0; bÞ ¼ ð0:02;0:1Þ. Each of
Fig. 4a–e corresponds to Ra ¼ 0:98Rac;1:01Rac;17Rac;18Rac and
20Rac , respectively, for Rac ¼ 2010:135. Also shown in the same
figures are convection patterns at specific instants. It is shown that
there is no flow when Ra is less than Rac (Fig. 4a). As Ra increase
just over Rac , i.e., when Ra ¼ 1:01Rac , convection sets in although
the convection strength defined by

R
X v2dX is small. As anticipated
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Fig. 4. Temporal variation of convection strength at various Rayleigh number when ðk0; b
Ra ¼ 20Rac and (f) convection strength versus Ra.
from the linear stability analysis, the strength of convection is
time-invariant when the Rayleigh number Ra is slightly higher
than the critical Rayleigh number Rac for this set of rheological
parameters. As Ra increases further, the steady convection is main-
tained with increasing strength until Ra < 17Rac . When Ra
becomes 18Rac , as shown in Fig. 4d, the convection strength starts
to oscillate although the pattern of convection cells remain the
same. When Ra increases further to 20Rac , higher harmonics
appear in the temporal variation of convection strength as shown
in Fig. 4e. Fig. 4f is a plot of the convection strength versus Ra.
For the case of overstability, the time average of convection
strength is plotted. The range of exchange of stabilities is indicated
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Þ ¼ ð0:02;0:1Þ. (a) Ra ¼ 0:98Rac , (b) Ra ¼ 1:01Rac , (c) Ra ¼ 17Rac , (d) Ra ¼ 18Rac , (e)
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by a solid line and that of overstability by a dashed line. For this
range of Ra, the convection strength varies linearly with respect
to Ra. Fig. 5a–d shows the temporal variation of convection
strength at various Rayleigh number when ðk0; bÞ ¼ ð0:5;0:9Þ. Since
these values of rheological parameters are within the domain of
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Fig. 5. Temporal variation of convection strength at various Rayleigh number when ðk0;
overstability (cf. Fig. 2), the convection strength oscillates tempo-
rally at the Rayleigh number just above the critical one as shown
in Fig. 5b ðRa ¼ 1:02RacÞ. At Ra ¼ 1:02Rac , the convection strength
is quite weak and the convection pattern remains the same with
two symmetric counter rotating cells. As Ra increases further to
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bÞ ¼ ð0:5; 0:9Þ, (a) Ra ¼ 0:98Rac , (b) Ra ¼ 1:02Rac , (c) Ra ¼ 3Rac and (d) Ra ¼ 10Rac .
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Ra ¼ 3Rac (Fig. 5c), the two counter rotating cells move from left to
right. Further increase to Ra ¼ 10Rac (Fig. 5d) results in the
generation of second harmonics in the temporal variation of
convection strength and a third cell seems to appear in addition
to the already existing two cells. Finally, we consider the case of
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Fig. 6. Temporal variation of convection strength at various Rayleigh number when ðk0;
ðk0; bÞ ¼ ð1:3;0:9Þ, which is also in the domain of overstability of
Fig. 2. Obviously, these is no flow when Ra ¼ 0:98Rac as shown in
Fig. 6a. As soon as Ra becomes larger than Ra, i.e., Ra ¼ 1:02Rac ,
oscillatory convection sets in as predicted by the linear stability
analysis. At Ra ¼ 1:02Rac (Fig. 6b), the convection pattern remains
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bÞ ¼ ð1:3; 0:9Þ. (a) Ra ¼ 0:98Rac , (b) Ra ¼ 1:02Rac , (c) Ra ¼ 3Rac and (d) Ra ¼ 10Rac .
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the same with two symmetric cells at a very weak convection
strength. At Ra ¼ 3Rac (Fig. 6c), the two cells move from right to
left. Increasing Ra further to Ra ¼ 10Rac , a second harmonics
appears in the temporal variation of convection strength and a
third cell emerges as previously.

6. Corroboration of the grid-by-grid inversion method:
viscoelastic flow past a cylinder

To corroborate the accuracy and robustness of the grid-by-
grid inversion method, we solve the flow of Oldroyd B fluid
past a cylinder placed at the center between two plates as
depicted in Fig. 7a. This problem has been served as a tradi-
tional benchmark problem for numerical algorithms for visco-
elastic fluids. Alves et al. [14] employ a finite volume method
and investigate the flow of Oldroyd B model for this flow
geometry. The governing equations for the isothermal Oldroyd
B fluid are as follows:

r � v ¼ 0 ð55Þ
@v
@t
þ v � rv ¼ �rP þ ð1� bÞ

Re
r2v þr � s ð56Þ

k
@s
@t
þ v � rs

� �
¼ 2b

Re
Dþ kððrvÞT � sþ s � rvÞ � s ð57Þ

where Re is the Reynolds number. Eqs. (55)–(57) are solved for the
domain of Fig. 7a using the grid-by-grid inversion method and the
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Fig. 7. Oldroyd B fluid past a cylinder. (a) flow geometry, (b) comparison of sxx along cylin
(d) the same as (b) except k ¼ 0:7.
results are compared with those of Alves et al. [14]. To be consistent
with Alves et al. [14], we set ð1� bÞ ¼ 0:59 and Re ¼ 0:0, which is
equivalent to removing the inertia force term v � rv in Eq. (56).
The matrix equation, Eq. (20), of the stress components for Eq.
(57) becomes

1þ k
Dt �2k @vx

@x � 2k @vx

@y 0

�k @vy

@x 1þ k
Dt �k @vx

@y

0 �2k @vy

@x 1þ k
Dt � 2k @vy

@y

2664
3775

nþ1ðitÞ

ij

sxx

sxy

syy

264
375

nþ1ðitþ1Þ

ij

¼

k
Dt s

xxðnÞ � k vx @sxx

@x þ vy @sxx

@y

� �
þ 2b

Re
@vx

@x

k
Dt s

xyðnÞ � k vx @sxy

@x þ vy @sxy

@y

� �
þ b

Re
@vx

@y þ @vy

@x

� �
k
Dt s

yyðnÞ � k vx @syy

@x þ vy @syy

@y

� �
þ 2b

Re
@vy

@y

266664
377775

nþ1ðitÞ

ij

ð58Þ

Then we find the velocity and stress fields following the procedure of
Section 3. Perhaps, the most stringent criterion for the accuracy of the
numerical results for this problem comes from the stress profile in
the difficult thin stress boundary layer and rear wake along the
symmetry plane. A detailed comparison of the longitudinal normal
stress variation along the symmetry line and cylinder surface is plot-
ted in Fig. 7b–d at k ¼ 0:4;0:6 and 0.7, respectively. Here, U is the
average inlet velocity. The data of Alves et al. [14] have been obtained
using 17,400 mesh points, while the number of meshes adopted for
s/R
3 4 5

0

s

πR

Grid-by-grid inversion
Alves et al. (2001)

s/R
3 4 5

Grid-by-grid inversion
Alves et al. (2001)

s/R
3 4 5

Grid-by-grid inversion
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der-wall and wake symmetry line for k ¼ 0:4, (c) the same as (b) except k ¼ 0:6 and
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the grid-by-grid inversion method is 26,600. Fig. 7b–d shows that the
grid-by-grid inversion method yields accurate predictions compared
with the results of Alves et al. [14].
7. Conclusion

In the present investigation, we have applied the grid-by-grid
inversion method to solve a nonisothermal viscoelastic flow prob-
lem. Specifically, we choose the Rayleigh–Bénard convection prob-
lem since it allows an accurate and elegant analysis of
hydrodynamic stability [5,13]. The numerical results from the
grid-by-grid inversion method are found to coincide with those
of linear stability analysis almost exactly. The grid-by-grid inver-
sion method solves the hyperbolic constitutive equation of visco-
elastic fluid by inverting a six-by-six matrix equation for 3-D
problems and a three by three matrix for 2-D problems at each grid
point. The resulting viscoelastic stress is adopted as a source term
in the Navier–Stokes equations. Thus, the numerical solution of
viscoelastic flow problems becomes as easy as that of Newtonian
fluids if the grid-by-grid inversion method is employed. Although
a finite volume method is used to implement the grid-by-grid
inversion method in the present investigation, one may use finite
element methods or spectral methods for the implementation of
the grid-by-grid inversion method without any difficulties. To cor-
roborate the accuracy and robustness of the grid-by-grid inversion
method, we have considered the standard benchmark problem of
viscoelastic flow past a cylinder placed at the center between
two plates. The grid-by-grid inversion method is found to yield
accurate predictions compared with the results of Alves et al. [14].
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